On two Laplacian matrices for skew gain graphs

نویسندگان

چکیده

Gain graphs are where the edges given some orientation and labeled with elements (called gains) from a group so that gains inverted when we reverse direction of edges. Generalizing notion gain graphs, skew have property reversed edge is image under an anti-involution. In this paper, study two different types, Laplacian g -Laplacian matrices for graph taken multiplicative F x field characteristic zero. Defining incidence matrix, also prove matrix tree theorem in case matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipartite Separability of Laplacian Matrices of Graphs

Recently, Braunstein et al. [1] introduced normalized Laplacian matrices of graphs as density matrices in quantum mechanics and studied the relationships between quantum physical properties and graph theoretical properties of the underlying graphs. We provide further results on the multipartite separability of Laplacian matrices of graphs. In particular, we identify complete bipartite graphs wh...

متن کامل

Laplacian Matrices of Graphs: A Survey

Let G be a graph on n vertices. Its Laplacian matrix is the n-by-n matrix L(G) = D(G) A(G), where A(G) is the familiar (0, 1) adjacency matrix, and D(G) is the diagonal matrix of vertex degrees. This is primarily an expository article surveying some of the many results known for Laplacian matrices. Its six sections are: Introduction, The Spectrum, The Algebraic Connectivity, Congruence and Equi...

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

On net-Laplacian Energy of Signed Graphs

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

متن کامل

Two - Graphs and Skew Two - Graphsin Finite

We describe the use of two-graphs and skew (oriented) two-graphs as isomorphism invariants for translation planes and m-systems (including ovoids and spreads) of polar spaces in odd characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EJGTA : Electronic Journal of Graph Theory and Applications

سال: 2021

ISSN: ['2338-2287']

DOI: https://doi.org/10.5614/ejgta.2021.9.1.12